Scientific accomplishments
Results obtained during the reporting period.

A. Pulsed Laser induced transfer of hemp stalk biocomposite components as nano-composite structured
thin films
(Published as: Cocean, A.; Cocean, G.; Diaconu, M.; Garofalide, S.; Husanu, F.; Munteanu, B.S.; Cimpoesu, N.; Motrescu, I.; Puiu, I.;

Postolachi, C.; Cocean, I. and Gurlui, S. Nano-Biocomposite Materials Obtained from Laser Ablation of Hemp Stalks for Medical
Applications and Potential Component in New Solar Cells. Int. J. Mol. Sci. 2023, 24, 3892. https://doi.org/10.3390/ijms24043892

The studies that have been previously reported on pulsed laser interactions with natural polymers [1-3]
and the effects induced by impurities in the laser ablation of silver target [4,5] provided information that
allowed development of new studies to investigate behavior of biocomposites and the effect of inorganic
atoms on the laser ablation process. Thus, the research of laser effects on polymeric biocomposites has
continued with a study published in 2023 [6,7]. Pulsed laser deposition performed with YG 981E/IR-10
laser system, 532 nm laser beam of 300 um radius was used with a pulse width of 10 ns, 10 Hz repetition
rate and 150 mJ/pulse for 30 minutes using crushed hemp stalk (Figure 1 a) as laser ablated target
resulted in a transfer of all of the biocomposite components in the thin film produced [6].
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Figure 2.1. Target of crushed hemp stalk (a); microscope image of thin film obtained on glass slab (b);
SEM image on hemp stalk and SEM image of the thin film (d); AFM 2D (e), 3D (f) and 1 D (g)
topographic analysis; COMSOL simulation results on temperatures achieved during pulsed laser
irradiation of hemp stalk (h)

The aspect of the thin film deposited on glass slab is translucent and of similar color to the hemp stalk
target (Figure 1 a, b). Nano and aggregated structures were measured based on SEM (Scanning Electron
Microscopy) and AFM (Atomic Force Microscopy) images using the soft Toup View.
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Figure 2.2. FTIR spectra (a), LIF spectra (b) and results interpretation of functional groups in FTIR
analysis (c) and fluorophores emission in LIF analysis (d)

The analyzes proved identical chemical composition re-organized in a nano-structured composite in the
obtained thin films (Figure 2.2. a, ¢). The main chemical components are polymers (cellulose, lignin,
hemicellulose, waxes, starch) and phenolic acids (p-coumaric and ferulic acids) as per Fourier Transform
Infrared spectroscopy (FTIR) analysis (Figure 2.2. a and c). Laser Induced Fluorescence Spectroscopy



(LIF) evidenced emissions specific to the fluorophores of coumaric and ferulic acids and also to
chlorophyll.

The EDX (Energy Dispersive X-ray Spectroscopy) shows and increase in calcium and magnesium
concentration from an average of 1.5% calcium and 0.2% magnesium in the HMP-STK target to an
average of 2.2% calcium and 1.2% magnesium in the PLD-HMP-STK thin films, while carbon content
decreased from an average of 66% in HMP-STK target to 50% or less in the PLD-HMP-STK thin films.
The results of the simulation in COMSOL of the pulsed laser irradiation, as plots of maximum
temperatures achieved due to laser beam absorption and heat diffusion by calcium and lignin (Tmax-Ca
and Tmax-lignin) compared to calcium and lignin as components in the lignin/Ca composite (Tmax-Ca
in lignin/Ca and Tmax-lignin in lignin/Ca) and at an equilibrium in the spot center of the composite (Teq
lignin/Ca in spot) are presented in Figure 2.1. h. The simulation provides information on the heating
enhancement processes on both lignin and calcium; this could explain the increase in calcium content in
the PLD-HMP-STK compared to the HMP-STK target.

The thin film obtained from hemp stalk proves good tribological properties. A large domain of functional
applications is suitable for the nano-biocomposite thin film fabricated from hemp stalk by PLD from
medicine (in transdermal drug delivery devices - TDD systems; gas sensing in medicine) to solar cells
and also as medium for metallic impurities for further transfer of metals by laser irradiation and for the
study of other intensified transfer and Kinetic processes.

B. Study of optimization of polymeric matrix for controlling silver particles laser ablation and
accelerated kinetic

The influence of the target impurities on the laser ablation that have already been reported [1-7] proved
the role of heating characteristics of the impurity materials and/or of the matrix material to replace the
optical characteristics unfavorable to the absorption of laser radiation in the laser ablation process. In
the new study reported herein, three target samples with metallic filers in a polymeric composite were
fabricated and their interactions with the pulsed laser beam were compared to a reference target sample.
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Figure 2.3. The target samples Chit-Oil-AgP (a); Chit-Oil-GRNT (b); Chit-AcC-AgP (c); Chit-Qil (d)
and the resulted PLD thin films Chit-Oil-AgP-PLD (e); Chit-Oil-GRNT-PLD (f); Chit-AcC-AgP-PLD
(g); Chit-Oil-PLD (h)

The targets with metallic insertion were fabricated as it follows: 1. chitosan mixed with flax oil and
particles of silver (Chit-Oil-AgP) were included in the mixture; 2. chitosan mixed with flax oil and a
garnet gemstone (Chit-Oil-GRNT) of grain size was included in the middle of the target; 3. chitosan
mixed with citric acid aqueous solution and particles of silver (Chit-AcC-AgP), the mixture being treated
with sodium bicarbonate. The reference sample was fabricated from chitosan mixed with flax oil (Chit-
Oil). The reference sample was placed on a silver disk.
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Figure 2.4. Laser installation with YG 981E/IR-10 laser system - Quantel, Les Ulis, France- set-up at
LOASL (a) and (b) and its schematic representation (c)



Each sample was used as target in PLD processes performed with the YG 981E/IR-10 laser system, 532
nm laser beam of 650 um radius was used with a pulse width of 10 ns, 10 Hz repetition rate and 60
mJ/pulse for 30 minutes.
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Figure 2.5. Microscope images of Chit-oil-AgP-PLD (a); Chit-oil-AgP target ablated (b); Chit-oil-
GRNT-PLD (c); Chit-0il-GRNT target ablated (d); Chit-AcC-AgP-PLD (e); Chit-AcC-AgP target (f);
Chit-0il-PLD (g); Chit-oil target ablated (h)

Microscope images in Figure 2.5 (a-h) show the laser irradiation effects on each of the four tested
samples. The highest yield of ablated material was obtained from the Chit-Oil-AgP target, noticed as
preponderantly oil with visible thermal effects on the target irradiated spot. Thin films were obtained
from Chit-Oil-GRNT, and Chit-AcC-AgP , induced thermal effects being also well observed. The
reference sample Chit-Oil almost has not been ablated.
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Figure 2.6. SEM images of the thin films Chit-Oil-AgP-PLD (a), (b), (c); Chit-Oil-GRNT-PLD (d),

The thin films resulted in particular morphological structures (Figure 2.6). Comparing images in Figure
2.6 for Chit-Oil-AgP-PLD (a), (b), (c) to the images for Chit-Oil-GRNT-PLD (d), (e), (f), (g), where the



composite matrix is the same (chitosan and flax oil) and the impurities or “immersed” material is
different, a first conclusion is that silver particles favored abundant oil ablation, while the garnet favored

ablation of the solid material, mainly chitosan.
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Figure 2.7. Profilometry performed on the thin films Chit-AcC-AgP-PLD sample 1 (a) and Chit-Oil-
GRNT-PLD sample 2 (b)

The thin film topography performed with DektakXT Profilometer Bruker on the Chit-Oil-GRNT and
Chit-AcC-AgP-PLD is in accordance with the 2 D SEM images pattern.
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Figure 2.8. EDX elemental composition on thin films surface: Chit-Oil-AgP-PLD (a), (b), (c), (d);
Chit-Oil-GRNT-PLD (e), (f) (i), (j); Chit-AcC-AgP-PLD (k), (), (m), (n)

The Chit-Oil- AgP thin film elemental composition (Figure 2.8 a-d)analyzed with EDX method denote
ablated Ag with an uniform distribution in the thin film (0.03%-0.04% atomic percentage). The thin
film obtained from Chit-Oil-GRNT contain Fe, Si, Ni as impurities resulted from the garnet ablation
(Figure 2.8 e-j). Although on a spot from an area of the thin film obtained from the Chit-AcC-AgP
sample, silver was identified in a large percentage (1.24% in atomic percentages), the fact that it is an
isolated value, denotes a large non-uniformity of the composition of the Chit-AcC-AgP layer.
COMSOL numerical simulation was performed for Chit-Oil; and Chit-Oil-AgP laser irradiation. The
parameters in the numerical model are the same as in the experiments.
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Figure 2.9. COMSOL numerical simulation of laser heating at 60 mJ and 650 pm beam radius: Chit-
oil 2D surface temperature (a), 3D isosurface (b), 1D surface temperature (c); Chit-oil-AgP 2D surface
temperature (d), 3D isosurface (e), 1D surface temperature (f)



The results of the simulation sustain and explain the experiments (Figure 2.9 . The oil, due to its low
extinction coefficient, does not absorb the laser beam. In the mixture denoted as Chit-Oil, the particles
of chitosan are coated with an oil film which makes them also inactive in the laser irradiation process.
When silver particles are placed in a chitosan-oil matrix, the thermal effects are highly increased and
plasma threshold is achieved with temperatures of 4.5x10™ K.

The experimental results also indicate that the oil behaves as a carrier of silver atoms, ions and clusters,
contributing to the uniform dispersion on the support surface. The specific fluid instabilities during laser
ablation and deposition [5] are evidenced by the droplets on the surface of Chit-Oil-AgP-PLD.
Difficulties consist in finding a way to handle and transport the Chit-Oil-AgP produced PLD of AgNP
in oil
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